Wednesday, January 9, 2019

Basics Of Battery Packs For Medical Equipment

By Deborah Roberts


There are many instances in which backup power source for devices at a hospital or health facility might be needed. Say there is a blackout. Or there is a need for extra devices to be set up because the facility is past capacity. Battery packs for medical equipment then come in handy to help save lives. They become the saving grace in emergency situations. More so in remote areas and war zones.

One common type of cells is called Zinc air. This is just a cell that oxidizes zinc with oxygen from the air. Experts say that as long as the cell is kept in an airtight package, it has a shelf life of up to three years. As soon as it gets exposed to the air, degradation starts. This may be thought to be one of the cheapest options out there. It replaced the mercury zinc oxide cells which were banned by legislation.

A more standard type is the Lithium iodide. This is more commonly used in medicine. It uses lithium as an anode. Unlike the aforementioned type, it is fairly expensive. It is also very long serving. It is said that with proper use and maintenance, this cell can b used for up to 15 years. It also has a long charge life.

One of the key components of cells and their suitability for any device is the chemistry. The chemistry determines whether the cells will run that device efficiently. Chemistry will also determine how long it will stay in use. The chemistry might also compromise the device itself. That is if it is not appropriately analyzed. One aspect of chemistry is the internal resistance. This is a phenomenon that causes the cell to heat up excessively and causing a drop in voltage, therefore, causing a shortcoming in functionality.

The consensus is that cells operate at optimum capacity in room temperature. However, a higher ambient temperature has been found to have a positive impact on the performance of the cell. On the other hand, over time the battery structure will be compromised and therefore break down. The cell should not be prone to excessive heating. One should ensure to let the expert know if the cells will be used in areas with extreme temperatures. This can be remedied.

Ever had two different phones that charged at completely different speeds? One will be all filled up and ready to go within an hour. The other will take up to four hours to get to 100%. The same is true for these kinds of cells. Fast charging is good until the consequent chemical and physical changes cause a decrease in performance in the long term.

As a layman, one will usually be interested in one thing. The charge life. How long will the charge keep? How long will the device run on the cell only? Is it long enough? Is there some sort of mechanism that allows for a backup cell to be attached?

As a reminder, try to keep these cells fully charged and ready to go at all times. Have extras too. A cell could have degraded in the chaos of a trauma. An important tip, read the instructions on the packaging. These are good at guiding the use of the batteries and ensuring longevity.




About the Author:



0 comments: